Stereometrie - Vzájemná poloha přímky a roviny

Vydáno dne v kategorii SŠ Matematika; Autor: Jakub Vojáček; Počet přečtení: 21 517

Popíšeme si jaké situace mohou nastat mezi přímkou a rovinou.


Začneme opět pozorováním, na následujícím obrázku je dána krychle ABCDEFGH. Určete počet společných bodů s přímkou p.

ALT

Na prvním obrázku leží přímka v rovině, má nekonečně mnoho společných bodů. Pokud by takovýto vztah nastal mezi dvěma přímkami, hovořili bychom, že jsou totožné, ale v případě roviny a přímky se o totožnosti nedá mluvit, proto můžeme konstatovat, že na prvním obrázku je přímka a rovina rovnoběžná. Na druhém obrázku nemá přímka a rovina žádný společný bod. V tomto případě tedy je přímka a rovina také rovnoběžná. Na posledním obrázku má přímka a rovina společný právě jeden bod a to je důkazem, že se jedná o stav různoběžnosti.

Víc se toho snad o vztahu mezi přímkou a rovinou nedá říci a tak sem pro vás na závěr připravil několik příkladů:

1) Je dána krychle ABCDEFGH. Určete všechny přímky, které procházejí bodem H a některým dalším vrcholem krychle a s rovinou ABC jsou různoběžné.



2) Je dána krychle ABCDEFGH. Určete všechny roviny, které prochází bodem H a dalším dvěma vrcholy krychle a jsou s přímkou BC různoběžné.



3) Je dána krychle ABCDEFGH. Určete všechny roviny, které prochází bodem H a dalším dvěma vrcholy krychle a jsou s přímkou BC rovnoběžné.



Test

Určete limitu \lim\limits_{x\to2}\frac{x+2}{x-1}:


Hlavolam

Zajíc utíká od lišky rychlostí 10 metrů za sekundu. Liška ho pronásleduje rychlostí 12 metrů za sekundu. Pokud je liška původně 50 metrů za zajícem, za jak dlouho liška dohoní zajíce?